Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model.

نویسندگان

  • Po-Hsun Wang
  • Hao-Li Liu
  • Po-Hung Hsu
  • Chia-Yu Lin
  • Churng-Ren Chris Wang
  • Pin-Yuan Chen
  • Kuo-Chen Wei
  • Tzu-Chen Yen
  • Meng-Lin Li
چکیده

In this study, we develop a novel photoacoustic imaging technique based on gold nanorods (AuNRs) for quantitatively monitoring focused-ultrasound (FUS) induced blood-brain barrier (BBB) opening in a rat model in vivo. This study takes advantage of the strong near-infrared absorption (peak at ≈ 800 nm) of AuNRs and the extravasation tendency from BBB opening foci due to their nano-scale size to passively label the BBB disruption area. Experimental results show that AuNR contrast-enhanced photoacoustic microscopy (PAM) successfully reveals the spatial distribution and temporal response of BBB disruption area in the rat brains. The quantitative measurement of contrast enhancement has potential to estimate the local concentration of AuNRs and even the dosage of therapeutic molecules when AuNRs are further used as nano-carrier for drug delivery or photothermal therapy. The photoacoustic results also provide complementary information to MRI, being helpful to discover more details about FUS induced BBB opening in small animal models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification of blood-brain-barrier permeability dysregulation and inflammatory activity in MS lesions by dynamic-contrast enhanced MR imaging

Objective: Measurement of blood-brain permeability dysfunction in active and chronic MS lesions with T1-weighted dynamic contrast-enhanced MRI to show variation in inflammatory activity Background: blood-brain-barrier perfusion characterization impaired in MS as some studies have shown recently buta comparison between perfusion parameters in contrast-enhanced and non-enhanced lesions not have ...

متن کامل

Contrast-Enhanced Ultrasound Imaging for the Detection of Focused Ultrasound-Induced Blood-Brain Barrier Opening

The blood-brain barrier (BBB) can be transiently and locally opened by focused ultrasound (FUS) in the presence of microbubbles (MBs). Various imaging modalities and contrast agents have been used to monitor this process. Unfortunately, direct ultrasound imaging of BBB opening with MBs as contrast agent is not feasible, due to the inability of MBs to penetrate brain parenchyma. However, FUS-ind...

متن کامل

Blood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects

Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into...

متن کامل

Focused Ultrasound-Induced Blood-Brain Barrier Opening: Association with Mechanical Index and Cavitation Index Analyzed by Dynamic Contrast-Enhanced Magnetic-Resonance Imaging

Focused ultrasound (FUS) with microbubbles can temporally open the blood-brain barrier (BBB), and the cavitation activities of microbubbles play a key role in the BBB-opening process. Previous attempts used contrast-enhanced magnetic resonance imaging (CE-MRI) to correlate the mechanical index (MI) with the scale of BBB-opening, but MI only partially gauged acoustic activities, and CE-MRI did n...

متن کامل

Gold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice

Introduction: Light-driven cancer therapy strategies (e.g. photodynamic therapy and photothermal therapy) have undergone remarkable progress in recent years, but they still suffer from a serious drawback of limited penetration depth of light in tissue. As a non-invasive and non- ionizing radiation, ultrasound can be focused remotely, transferring acoustic energy deep in the bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 17 6  شماره 

صفحات  -

تاریخ انتشار 2012